考研数学临场答题的指南攻略
考生们在准备考研数学的复习是,需要了解清楚临场的答题技巧。小编为大家精心准备了考研数学临场答题的相关资料,欢迎大家前来阅读。
考研数学临场答题的指导
策略之一:缺步解答
对一个疑难问题,确实啃不动时,一个明智的解题策略是,将它划分为一个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的语言文字转化成数学语言和相应数学公式,把条件和目标译成数学表达式等,都能得分。而且可望从上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。
策略之二:跳步解答
解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底。
如果题目有两问,第一问做不上,可以把第一问当做已知条件,先完成第二问,这叫跳步解答。如果在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。
黄金战术原则:六先六后,因人制宜
战术之一:先易后难
就是先做小题和简单题,后做综合题和大题。根据自己的实际,果断跳过啃不动的题目,从易到难解题。但要注意认真对待每一道题,力求有效,不能走马观花,有难就退。
战术之二:先熟后生
通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处。对后者,不要惊慌失措,应想到试题偏难对所有考生都难,确保情绪稳定。
对全卷整体把握之后,就可实施先熟后生的战略战术。即先做那些内容掌握到家、题型结构比较熟悉、解题思路比较清晰的题目,让自己产生“旗开得胜”的效果,从而有一个良好的开端,以振奋精神、鼓舞信心,很快进入最佳思维状态,即发挥心理学中所谓的“门槛效应”。之后做一题得一题,不断产生激励,稳拿中低,见机攀高,达到超常发挥、拿下中高档题目的目的。
战术之三:先同后异
就是说,先做同科同类型的题目,思维比较集中,知识和方法的沟通比较容易。考研题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”转移过急、过频的跳跃,从而减轻大脑负担,保持有效精力。
战术之四:先小后大
小题一般信息量少、运算量小,易于把握,不要轻易放过,应争取在做大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理空间。
战术之五:先点后面
近年的考研数学解答题呈现为多问渐难式的“梯度题”,解答时不必一气做到底,应走一步解决一步,而前面的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面。
战术之六:先高后低
即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;如估计两题都不容易,则先做高分题“分段得分”,以增加在时间不足的前提下的得分能力。
与此同时,要求大家审题要慢,解答要快;关键步骤力求全面准确,宁慢勿快。尽量做到内紧外松,既要保持注意力高度集中,又要思想上放得开,沉着应战,确保成功!
考研数学各题型答题技巧
一、选择题
对于选择题来说,只有一个正确选项,其余三个都是干扰项,做题的时候只需给出正确选项的字母即可,不用给出推导过程,选对得满分,选错或者不选均得0分,不倒扣分。在做选择题的时候大家还是有很多方法可选的,常用的方法有:代入法、排除法、图示法、逆推法、反例法等。如果考试的时候大家发现哪种方法都不奏效的话,大家还可以选择猜测法,至少有25%的正确性。选择题属于客观题,答案是唯一的,并且考研数学考试中的多选题也是以单选的形式出现的,最终的答案只有一个,评分是不偏不倚的。
选择题的难度一般都是适中的,均为中等难度,没有特别难的,也没有一眼就能看出选项的题目。选择题主要考查的是考生对基本的数学概念、性质的理解,要求考生能进行简单的推理、判断、计算和比较即可。所以选择题对于考生来说,要么依靠扎实的知识得分,要么靠自身的运气得分,这32分要想稳拿需要考生在复习的时候深入思考,不能主观臆想,要思考与动手相结合才行。
二、填空题
填空题的答案也是唯一的,做题的时候给出最后的结果就行,不需要推导过程,同样也是答对得满分,答错或者不答得0分,不倒扣分。这一部分的题目一般是需要一定技巧的计算,但不会有太复杂的计算题。题目的难度与选择题不相上下,也是适中。填空题总共有6个,一般高数4个,线代和概率各1个,主要考查的是考研数学中的三基本:基本概念、基本原理、基本方法以及一些基本的性质。做这24分的题目时需要认真审题,快速计算,并且需要有融会贯通的知识作为保障。
三、解答题
解答题的'分值较多,占总分的60%多,类型也较复杂,有计算题、证明题、实际应用题等,并且一般情况下每道大题都会有多种解题方法或者证明思路,有的甚至有初等解法,得分率不容易控制,所以考试在做解答题是尽量用与《考试大纲》中规定的考试内容和考试目标相一致的解题方法和证明方法,每一步的表述要清楚,每题的分值与完成该题所花费的时间以及考核目标是有关系的。
综合性较强、推理过程较多、或者应用性的题目,分值较高;基本的计算题、常规性试题和简单的应用题分值较低。解答题属主观题,其答案有时并不唯一,要能看到出题人的考核意图,选择合适的方法解答该题。计算题的正确解答需要靠自己平时对各种题型计算方法的积累及掌握的熟练程度。如二元函数求最值的方法和步骤,曲线积分、曲面积分的计算方法及其与重积分的关系,以及格林公式、高斯公式等,重积分的计算方法及一些特殊结论如积分区域对称,被积对象具有一定的奇偶性时的情形等都需要非常熟悉。
证明题是大多数考生感到无从下手的题目,所以一些简单的证明题在考试中也会得分率极低。证明题考查最多的是中值定理微分中值定理及积分中值定理,其次从题型来说就是不等式的证明,方法却比较多,但仍然是有章可寻的。这就需要考生在平时多留意证明题的类型及其证明方法。解答题除考查基本运算外,还考查考生的逻辑推理能力和综合运用能力,这需要考生在复习的过程中不断的加强与提高。
考研数学整体难度小结
今年的数一、数二、数三的整体难度比去年稍微有所下降,特别是高数部分选择题填空题都是常规题目,没有出现难题、偏题、怪题。大题的前面三道题也属于基础题目,计算量也不大,18和19题的计算量相对要大一些。
第1题考察的是极限的知识,相信大家都能拿到分数。
第2题考察我们对函数的极值点求解的掌握情况,多元函数极值。
第3题是讨论函数的性质。总体来说,选择题难度不大,没有难题,大家应该把基础题拿到分。
第10题是,考了差分方程有重根的情况。
第11题考察了经济学应用,记住公式了也不是很难。
第12题考察了全微分形式,这种题型前几年也出现过。
第15题考察的是极限问题,对于变限积分,先做变换做进行处理。
第16题是二重积分的问题,这种题目在做的时候一定要先划出积分区域,再加上计算的时候细心一点,也不会丢分。
第17题是定积分定义,转换成分部积分。
18、19相对来说难度要大一些。
整个数学的命题我认为有以下三个特点:
第一,整体的难度相对去年来讲都有下降;
第二,没有太多复杂的、大规模的计算,主要考查的都是一些平常强调过的基本概念、基本方法;
第三,题型的重复性相当高,75%以上的题型都是以前考过的,所以凡是好好研究过前几年真题的同学应该都是没有问题的。