当前位置:免费学习网考试资料考研资讯内容页

考研数学如何掌握学习方法

2022-03-14 01:25:01 考研资讯 访问手机版

  考研数学如何掌握学习方法

  我们在准备考研数学的复习时,需要掌握好一些学习方法。小编为大家精心准备了考研数学学习的指南,欢迎大家前来阅读。

  考研数学学习的技巧

  解题训练中,常常会遇到自己以前没有想到的方法或多次碰到的结论,大家在复习过程中,要理清这些结论的原理,总结方法适用的范围,记录下来以备时常参阅。这样时间长了,拥有的方法与所得结论就成为自己独特的解题百宝箱。特别是考研核心题型所用的技巧及常规方法,更需要大家熟练掌握,这样做到见同类型题目时,就能快速反应出解题方法,并预见到可能出现的问题。

  学会“看书”

  绝大多数考生在开始复习之时已经对本科教材中的内容感到生疏,甚至有些部分已经基本遗忘。看书需要注意的问题,首先是全面,凡是在考纲范围内的知识点都一定要复习到,不可根据个人的喜恶或自我推断随意跳过某些知识点的复习;其次要有所侧重,考纲中对各知识点的考试要求有“理解”、“了解”、“掌握”等不同层次,要根据此类考试要求程度的不同把握复习重点,对要求“理解”“掌握”的内容下大气力巩固到位;另外还要深入,看书不可囫囵吞枣把教材上的概念、定理、性质的内容一扫而过,仅停留在有印象、记住一个模棱两可的结论、大体知道怎么回事的层面上,而必须深入彻底,对基本知识点为什么引入、其内涵与外延、定理、性质成立的前提条件等进行深层次的思考并加以总结,做到知其然更知其所以然,才能避免遗忘、混淆的现象;最后要注意知识点之间的内在联系,建立层次分明、条理清晰的知识体系,这也是应对考试综合性题目所需特别注意的问题。

  学会“做题”

  数学题目均会给出一些已经条件,根据这些条件选择结论、求取结果、证明结论,那么解题的秘密全在这些已知条件中,条件的每一句话,每一个词语都须引起重视与注意,特别是解题遇到困难的时候,一定要多分析题目条件。例如题目已知函数的二阶导函数在某个区间上绝对值小于正数M,那么其中隐含了:函数是二阶可导的,函数的二阶导数是有界的,此函数可以用泰勒定理展开到2阶导等。做题多一些后,看到一个题目的条件立刻会联想到相应的解题方法与常用结论。在训练解题技巧过程中,还要常常把题目条件与题目结论联系起来考虑,看题目结论与条件中的哪些信息能挂上钩,以便利用此信息进一步展开寻求解决问题的途径。

  考研数学各题型知识点概述

  一、线性代数

  第一部分,行列式和矩阵。在这部分,重点内容是行列式的计算,逆矩阵以及初等变换和初等矩阵。其中,行列式是线性代数中最基本的运算之一,考试直接考查行列式的知识点不多,但作为间接考查的内容,行列式的计算在后续各个章节的题目中都有所涉及。矩阵是线性代数中最基本的内容,线性代数中绝大多数运算都是通过矩阵进行的,其相关的概念和运算贯穿整个学科。线性代数中基本上没有题目不涉及到矩阵以及矩阵的运算的。

  第二部分,线性方程组与向量。线性方程组与向量是线性代数的核心内容,也是理解线性代数整个学科的枢纽,是考生系统地把握整个学科的关键。在考试中这部分所占的比重非常大,一般每年考查一道大题加一道小题。大题可以考向量组的线性相关性,也可以考含参数的线性方程组求解。

  第三部分,特征向量与二次型。考试中,这部分所涉及的题目多,分值大,特征值与特征向量是线性代数的重要内容,也是重要的考点之一,既是对前面矩阵、线性方程组的知识的综合应用,也是后面二次型的基础。二次型是对特征值与特征向量相关知识的发展与应用,用到的方法也与上一章类似,在考试中一般与特征向量交替或是结合出题。

  二、概率论与数理统计

  一共是八章,前五章是概率论,数学一、数学三都要考的。数理统计是后面三章,数学一和数学三是要考的,但是估计量的评选标准、置信区间和假设检验只有数学一要求。作为前面五章的概率论,数学教研室在此简单介绍一下。

  第一章是随机事件和概率,是后续各章的基础。它的重点内容主要是事件的关系和运算,古典概型和几何概型,加法公式、减法公式、乘法公式、全概公式和贝叶斯公式。

  第二章是一维随机变量及其分布,这部分的重点内容是常见分布,主要是以客观题的形式考查。常见分布中重点掌握二项分布、泊松分布、均匀分布、指数分布、正态分布。

  第三章二维随机变量,重点内容是二维随机变量的概率分布概率密度、边缘概率、条件概率和独立性。2009-2011连续三年,数三的两道解答题都是考查这部分内容的。二维离散型随机变量的概率分布的建立,主要是结合第一章的古典概率进行考查。二维连续型随机变量的边缘概率密度和条件概率密度的计算,很多考生计算存在误区,一定要注意。第三章还有一个重点和难点内容就是随机变量函数的分布,这在2009年以前经常以解答题的形式考查,所以考生也应该引起足够的重视。

  第四章随机变量的数字特征,每年必考,主要和其他知识点相结合来考查,一般是一道客观题和一道解答题中的一问,所以要重点复习。第四章是考试的`重点,但是不是考试的难点,考生掌握相应的公式进行计算即可。

  第五章有三个内容,分别是切比雪夫不等式、大数定律和中心极限定理。这不是考试的重点,至今只考过三次。所以本章主要掌握它们的条件和结论即可。

  这是概率论的五章内容,重点章是第三章、第四章。

  数理统计另外三章,那就是第六章基本概念、第七章参数估计、第八章是假设检验。

  第六章数理统计的基本概念主要是以客观题的形式进行考查。还有一种题型是结合数字特征进行考查,主要是出现在数一的试卷中。

  第七章参数估计中的点估计是数一的考试重点。参数估计经常是以解答题的形式进行考查,经常是试卷的最后一道题目。如果考试试卷中出现了这类题目,其实考生是完全能轻松拿到满分的,但是通过对历年试卷的分析,此类题目的得分并不是很理想,考生要注意答题顺序。估计量的评选标准只有数一的要求,数三不做要求。置信区间也是只有数一的要求,它的考试频率非常低,主要是以客观题的形式考查,考生只需要记住相应的公式即可。

  第八章假设检验只有数一要求。在1998年数学仅考过一道题,后来就没有考过,所以第八章不作为重点。

  考研高数知识点之一元函数微分学

  一元函数微分学考试内容:

  导数和微分的概念;导数的几何意义和物理意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;导数和微分的四则运算;基本初等函数的导数;复合函数、反函数、隐函数以及参数方程所确定的函数的微分法;高阶导数;一阶微分形式的不变性微分中值定理;洛必达L’Hospital法则;函数单调性的判别;函数的极值;函数图形的凹凸性、拐点及渐近线;函数图形的描绘;函数的最大值与最小值;弧微分;曲率的概念;曲率圆与曲率半径。

  考试重点:

  1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。

  2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

  3.了解高阶导数的概念,会求简单函数的高阶导数。

  4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。

  5.理解并会用罗尔Rolle定理、拉格朗日Lagrange中值定理和泰勒Taylor定理,了解并会用柯西Cauchy中值定理。

  6.掌握用洛必达法则求未定式极限的方法。

  7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。

  8.会用导数判断函数图形的凹凸性注:在区间内,设函数具有二阶导数。当时,的图形是凹的;当时,的图形是凸的,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。

  9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。