当前位置:免费学习网高中知识点高一内容页

高中数学必修一电子课本沪教版

2023-12-08 17:18:00 高一知识点 访问手机版

高一数学上册复习知识点

1.函数的基本概念

(1)函数的定义:设A、B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A.

(2)函数的定义域、值域

在函数y=f(x),x∈A中,x叫自变量,x的取值范围A叫做定义域,与x的值对应的y值叫函数值,函数值的集合{f(x)|x∈A}叫值域.值域是集合B的子集.

(3)函数的三要素:定义域、值域和对应关系.

(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等;这是判断两函数相等的依据.

2.函数的三种表示方法

表示函数的常用方法有:解析法、列表法、图象法.

3.映射的概念

一般地,设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.

高一数学上册练习题

一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的)

1.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩?UB=

A.{2,5}B.{3,6}

C.{2,5,6}D.{2,3,5,6,8}

2.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为

A.5B.4

C.3D.2

3.已知集合A={x|x2-2x>0},B={x|-5<x<5},则< p="">

A.A∩B=?B.A∪B=R

C.B?AD.A?B

4.设P,Q为两个非空实数集合,定义集合P__Q={z|z=a÷b,a∈P,b∈Q},若P={-1,0,1},Q={-2,2},则集合P__Q中元素的个数是

A.2B.3

C.4D.5

5.已知全集U=Z,集合A={x|x2=x},B={-1,0,1,2},则图中阴影部分所表示的集合为

A.{-1,2}B.{-1,0}

C.{0,1}D.{1,2}

6.若集合P={x|3

A.(1,9)B.[1,9]

C.[6,9)D.(6,9]

7.下列指数式与对数式互化不正确的一组是

A.e0=1与ln1=0B.log39=2与912=3

C.8-13=12与log812=-13D.log77=1与71=7

8.若loga7b=c,则a,b,c之间满足

A.b7=acB.b=a7c

C.b=7acD.b=c7a

9.有以下四个结论:①lg(lg10)=0;②ln(lne)=0;③若10=lgx,则x=10;④若e=lnx,则x=e2.其中正确的是

A.①③B.②④

C.①②D.③④

10.已知2a∈A,a2-a∈A,若A只含这两个元素,则下列说法中正确的是

A.a可取全体实数

B.a可取除去0以外的所有实数[

C.a可取除去3以外的所有实数

D.a可取除去0和3以外的所有实数

11.集合A中的元素y满足y∈N且y=-x2+1,若t∈A,则t的值为

A.0B.1

C.0或1D.小于等于1

12.设a,b∈R,集合A中含有0,b,ba三个元素,集合B中含有1,a,a+b三个元素,且集合A与集合B相等,则a+2b=

A.1B.0

C.-1D.不确定

二、填空题(本大题共4小题,每小题5分,共20分,把答案写在题中的横线上)

13.已知集合A={0,2,3},B={x|x=ab,a,b∈A且a≠b},则B的子集有________个.

14.已知集合A={-2,1,2},B={a+1,a},且B?A,则实数a的值是________.

9.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有________人..

15.如果集合A={x|ax2+2x+1=0}只有一个元素,则实数a的值为________.

16.已知集合A中只含有1,a2两个元素,则实数a不能取的值为________.

三、解答题(本大题共2小题,共25分,解答应写出文字说明,证明过程或演算步骤)

17.已知函数f(x)=x2-3x-10的两个零点为x1,x2(x1

18.设集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+(a2-5)=0},

(1)若A∩B={2},求实数a的值;

(2)若A∪B=A,求实数a的取值范围;

(3)若U=R,A∩(?UB)=A,求实数a的取值范围.

19.若所有形如3a+2b(a∈Z,b∈Z)的数组成集合A,判断6-22是不是集合A中的元素.

20.设集合A中含有三个元素3,x,x2-2x.

(1)求实数x应满足的条件;

(2)若-2∈A,求实数x.

高一年级数学学习方法

一、预习

1、通览教材,初步理解教材的基本内容和思路。

2、预习时如发现与新课相联系的旧知识掌握得不好,则查阅和补习旧知识,给学习新知识打好牢固的基础。

3、在阅读新教材过程中,要注意发现自己难以掌握和理解的地方,以便在听课时特别注意。

4、做好预习笔记。预习的结果要认真记在预习笔记上,预习笔记一般应记载教材的主要内容、自己没有弄懂需要在听课着重解决的问题、所查阅的旧知识等。

二、上课

1、课前准备好上课所需的课本、笔记本和其他文具,并抓紧时间简要回忆和复习上节课所学的内容。

2、要带着强烈的求知欲上课,希望在课上能向老师学到新知识,解决新问题。

3、上课时要集中精力听讲,上课铃一响,就应立即进入积极的学习状态,有意识地排除分散注意力的各种因素。

4、听课要抬头,眼睛盯着老师的一举一动,专心致志聆听老师的每一句话。要紧紧抓住老师的思路,注意老师叙述问题的逻辑性,问题是怎样提出来的,以及分析问题和解决问题的方法步骤。

5、如果遇到某一个问题或某个问题的一个环节没有听懂,不要在课堂上“钻牛角尖”,而要先记下来,接着往下听。不懂的问题课后再去钻研或向老师请教。

6、要努力当课堂的主人。要认真思考老师提出的每一个问题,认真观察老师的每一个演示实验,大胆举手发表自己的看法,积极参加课堂讨论。

7、要特别注意老师讲课的开头和结尾。老师的“开场白”往往是概括上节内容,引出本节的新课题,并提出本节课的目的要求和要讲述的中心问题,起着承上起下的作用。老师的课后总结,往往是一节课的精要提炼和复习提示,是本节课的高度概括和总结。

8、要养成记笔记的好习惯。是一边听一边记,当听与记发生矛盾时,要以听为主,下课后再补上笔记。记笔记要有重点,要把老师板书的知识提纲、补充的课外知识、典型题目的解题步骤和课堂上没有听懂的问题记下来,供课后复习时参考。

高一数学上册教学计划

一、教学目标

1、知识与技能目标

(1)、掌握集合的两种表示方法;能够按照指定的方法表示一些集合、

(2)、发展学生运用数学语言的能力;培养学生分析、比较、归纳的逻辑思维能力、

2、过程与方法目标

①通过实例抽象概括集合的共同特征,从而引出集合的概念是本节课的重要任务之一。因此教学时不仅要关注集合的基本知识的学习,同时还要关注学生抽象概括能力的培养。

②教学过程中应努力创造培养学生的思维能力,提高学生理解掌握概念的能力,训练学生分析问题和处理问题的能力

情感态度与价值观目标感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯;学习从数学的角度认识世界;通过合作学习增强合作意识;培养数学的特有文化——简洁精炼,体会从感性到理性的思维过程。

2、教材分析本节课位于我校现行教材≤中等职业教育国家规划教材≥数学第一章第一节≤集合≥的第二课时,这节课主要学习集合的表示方法。

集合语言是现代数学的基本语言。通过集合语言的学习,有利于学生简明准确地表达学习的数学内容。集合的初步知识是学生学习、掌握和使用数学语言的基础,是中职数学学习的出发点。

在中职数学中,这部分知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础。例如,在后续学习的集合的相关内容和第二章≤不等式≥、

第三章≤函数≥,在代数中用到的有数集、解集等;在几何中用到的有点集,都离不开集合。也是研究数学问题不可缺少的工具。这一课在本章的学习有很重要的意义,也是本章后续学习和后续学习的基础,起到承上启下的作用。

3、学情分析

学生在初中阶段的学习中,虽然已经有了对集合的初步认知,由于中职学生的现状,学生基础比较弱,学习习惯比较差,根据我校的现行教材结合学生的实际情况,为了培养学

生良好的学习习惯,打好基础,对集合的两种表示方法:列举法和描述法通过讲练结合、不断地巩固练习、提高练习来达到标准要求,鼓励学生理解的基础上记忆的学习方法来学习。

二、方法与手段

本节课采用新知识讲授课的教学模式,教学策略为先熟悉再深入,采用启发式、讲练结合等教学方法,并采用多媒体教学手段辅助教学。

3、教学重难点

重点:列举法、描述法。

难点:运用集合的三种常用表示方法正确表示一些简单的集合

4、教学方法:实例归纳、学生的自主探究、主动参与与教师的引导相结合,充分体现学生在课堂中的主体作用和教师的主导作用。

5、教学手段:多媒体辅助教学——主要是利用多媒体展示图片来增加学生的学习兴趣和对集合知识的直观理解。

6、教学思路:

7、教学过程

创设情境,引入课题

【活动】多媒体展示:1、草原一群大象在缓步走来。

2、蓝蓝的天空中,一群鸟在飞翔

3、一群学生在一起玩。

引导学生举出一些类似的例子问题

在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是一群大象、一群鸟、一群学生)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。

【设计意图】通过多媒体展示,极大地调动起了学生的积极性,吸引学生的注意力,设置轻松的学习气氛。

步步探索,形成概念

【活动1】观察下列对象:

①1~20以内的所有质数;

②我国从1991—20__年的13年内所发射的所有人造卫星

③金星汽车厂20__年生产的所有汽车;

④20__年1月1日之前与我国建立外交关系的所有国家;

⑤所有的正方形;

⑥到直线l的距离等于定长d的所有的点;

⑦方程x2+3x—2=0的所有实数根;

⑧新华中学20__年9月入学的所有的高一学生。

师生共同概括8个例子的特征,得出结论,给出集合的含义:把研究对象统称为元素,常用小写字母啊a,b,c…、表示,把一些元素组成的.总体叫做集合,常用大写字母A,B,C…、来表示。

【设计意图】使学生自己明确集合的含义,培养学生的概括能力。

【活动2】要求每个学生举出一些集合的例子,选出具有代表性的几个问题,比

如:

1)A={1,3},3、5哪个是A的元素?

2)B={身材较高的人},能否表示成集合?

3)C={1,1,3}表示是否准确?

4)D={中国的直辖市},E={北京,上海,天津,重庆}是否表示同一集合?

5)F={a,b,c}与G={c,b,a}这两个集合是否一样?

【分析】1)1,3是A的元素,5不是

2)我们不能准确的规定多少高算是身材较高,即不能确定集合的元素,

所以B不能表示集合

3)C中有二个1,因此表达不准确

4)我们知道E中各元素都是属于中国的直辖市,但中国的直辖市并不只有这几个,因此不相等。

5)F和G的元素相同,只不过顺序不同,但还是表示同一个集合

通过上述分析引导学生自由讨论、探究概括出集合中各种元素的特点,并让学生再举出一些能够构成集合的例子以及不能构成集合的例子,要求说明理由。师生一起得出集合的特征:

1)确定性:某一个具体对象,它或者是一个给定的集合的元素,或者不是该集合的元素,两种情况必有一种且只有一种成立、

2)互异性:同一集合中不应重复出现同一元素、

3)无序性:集合中的元素没有顺序

4)集合相等:构成两个集合的元素完全一样

【设计意图】引导学生自主探究得出集合的特征:确定性、互异性、无序性,集合相等,培养学生的抽象概括能力,同时使学生能更好的了解集合。

集合与元素的关系

【问题】高一(4)班里所有学生组成集合A,a是高一(4)班里的同学,b是

高一(5)班的同学,a、b与A分别有什么关系?

引导学生阅读教科书中的相关内容,思考上述问题,发表学生自己的看法。得出结论:①如果a是集合A的元素,就说a属于集合A,记作a∈A。

②如果b不是集合A的元素,就说b不属于集合A,记作b?A。

再让学生举一些例子说明这种关系。

【设计意图】使学生发挥想象,明确元素与集合的关系。

【活动】熟记数学中一些常用的数集及其记法

引导学生回忆数集扩充过程,阅读教科书第3页表格中的内容,认识常用数集记号。

【设计意图】使学生熟记常用数集的记号,以免日后做题时混淆。

集合的表示方法

【问题】由以上内容我们可以知道用自然语言可以描述一个集合,那么有没有其他方式表示集合呢?

集合的列举法表示

【活动】尝试用列举法第4页例1中的集合:

1)小于10的所有自然数组成的集合;

2)方程x2?x的所有实数根组成的集合;

3)由1到20以内的所有素数组成的集合;

并思考列举法的特点。

引导学生阅读教科书,自主学习列举法,得出答案:

1)A={0,1,2,3,4,5,6,7,8,9}

2)A={0,1}

3)A={2,3,5,7,11,13,17,19}

通过上述讲解请同学说说列举法的特点:

1)用花括号{}把元素括起来

2)集合的元素可以具体一一列出

【设计意图】使学生学习基本了解用列举法表示集合的方法,并了解列举法的特点。

集合的描述法表示

【活动1】提出教科书中的思考题:

1)你能用自然语言描述集合{2,4,6,8}吗?

2)你能用列举法表示不等式x—7<3的解集吗?

学生讨论,师生总结:

1)从2开始到8的所有偶数组成的集合

2)这个集合中的元素不能一一列出,因此不可以用列举法表示

引导学生思考、讨论用列举法表示相应集合的困难,激发学生学习描述法的积极性。

引导学生阅读教科书中描述法的相关内容,让学生讨论交流,归纳描述法的特点。

例如2)可以用描述法表示为:A={x?R|x<10}

【设计意图】使学生体会用描述法表示集合的必要性,会用描述法表示集合。

【活动2】引导学生完成第5页例2

1)方程x2?2?0的所有实数根组成的集合

2)由大于10小于20的所有整数组成的集合

讨论应当如何根据问题选择适当的集合表示法。学生回答,老师进行总结:

1)描述法:A={ x?R|x2?2?0}

列举法:

2)描述法:A={ x?Z|10

列举法:A={11,12,13,14,15,16,17,18,19}

【设计意图】使学生掌握好两种表示法各自的特点,根据题目灵活选择。

课堂小结,学习反思

【问题】1)集合与元素的含义?

2)集合的特点?

3)集合的不同表示方法

引导学生整理概括这一节课所学的知识

【设计意图】归纳整理知识,形成知识网络,并培养学生自主对所学知识进行总结的能力。

8、作业布置,巩固新知

课后作业:习题组第4题

课后思考作业:①结合实例,试比较用自然语言、列举法和描述法表示集合时各自的特点和适用的对象。

②自己举出几个集合的例子,并分别用自然语言、列举法和描述法表示出来。

9、板书设计

集合的含义与表示

1、元素的含义:把研究对象统称为元素

2、集合的含义:一些元素组成的总体。

3、集合元素的三个特性:确定性,互异性,无序性,集合相等

4、元素与集合的关系:a?A,a?A

5、常用数集与记法

6、列举法

7、描述法

8、课堂小结