七年级数学下册知识总结
1、整式的乘除的公式运用(六条)及逆运用(数的计算)。
(1)an·am(2)(am)n=(3)(ab)n=4)am÷an(5)a0(a≠0)(6)a-p==
2、单项式与单项式、多项式相乘的法则。
3、整式的乘法公式(两条)。
平方差公式:(a+b)(a-b)=
完全平方公式:(a+b)2(a-b)2
常用公式:(x+m)(x+n)=
4、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。
5、互为余角和互为补角和
6、两直线平行的条件:(角的关系线的平行)
①相等,两直线平行;
②相等,两直线平行;
③互补,两直线平行.
7、平行线的性质:两直线平行。(线的平行
8、能判别变量中的自变量和因变量,会列列关系式(因变量=自变量与常量的关系)
9、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义(3)图象交点表示什么意义(4)会求平均值。
10、三角形
(1)三边关系:角的关系)
(2)内角关系:
(3)三角形的三条重要线段:
(4)三角形全等的判别方法:(注意:公共边、边的公共部分对顶角、公共角、角的公共部分)
(5)全等三角形的性质:
(6)等腰三角形:(a)知边求边、周长方法(b)知角求角方法(c)三线合一:
(7)等边三角形:
11、会判轴对称图形,会根据画对称图形,(或在方格中画)
12、常见的轴对称图形有:
13、(1)等腰三角形:对称轴,性质
(2)线段:对称轴,性质
(3)角:对称轴,性质
14、尺规作图:(1)作一线段等已知线段(2)作角已知角(3)作线段垂直平分线
(4)作角的平分线(5)作三角形
15、事件的分类:,会求各种事件的概率
(1)摸球:P(摸某种球)=
(2)摸牌:P(摸某种牌)=
(3)转盘:P(指向某个区域)=
(4)抛骰子:P(抛出某个点数)=
(5)方格(面积):P(停留某个区域)=
16、必然事件不可能事件,不确定事件
17、方法归纳:(1)求边相等可以利用
(2)求角相等可以利用。
(3)计算简便可以利用。
18、注意复习:合并同类项的法则,科学记数法,解一元一次方程,绝对值。
七年级数学下册复习提纲总结
从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线(bisectorofangle).三角形三个角平分线的交点叫做内心.
角平分线的性质
1.角平分线上的一点到角的两边距离相等.2.角的内部到角的两边距离相等的点在角的平分线上.(逆运用)三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线.三角形的角平分线不是角的平分线:一个是线段,一个是射线.三角形角平分线有个有趣的性质:三角形ABC中角A的平分线为AD,则AB:AC=BD:CD.三角形的三条角平分线相交于一点,该点为三角形的内心,且内心到三条边的距离相等.
3.角平分线是到角两边距离相等的所有点的集合.
中线
连接一个顶点与它对边中点的线段,叫做三角形的中线.中线的交点为重心,重心分中线2:1(顶点到重心:重心到对边中点).中线:三角形中,连结一个顶点和它所对边的中点的连线段叫做三角形的中线.中线也是线段,一个三角形有3条中线.在一个角为30°直角三角形中.60°角所对应的边上的中线为斜边的一半.在一个三角形中,其一短边为斜边的一半,且这个三角形为30°的直角三角行,那么,60°角所对的边上的中线在此三角形中有三个等量.
图形变换的简单应用
考点一、平移(3~5分)
1、定义
把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。
2、性质
(1)平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动
(2)连接各组对应点的线段平行(或在同一直线上)且相等。
考点二、轴对称(3~5分)
1、定义
把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。
2、性质
(1)关于某条直线对称的两个图形是全等形。
(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
3、判定
如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4、轴对称图形
把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
考点三、旋转(3~8分)
1、定义
把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质
(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
考点四、中心对称(3分)
1、定义
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质
(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定
如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形
把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
考点五、坐标系中对称点的特征(3分)
1、关于原点对称的点的特征
两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)
2、关于x轴对称的点的特征
两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)
3、关于y轴对称的点的特征
两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)
七年级学数学的最快方法
适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。
对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。
实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。