从三年级就开始学习的数学积累到六年级,孩子做过无数的题目,见过无数的题型,但能反映在小升初那张试卷上的,无非也就那么几个知识点。小编在这里整理了相关知识,快来学习学习吧!
攻克小升初数学必考的知识点
何谓“数、行、形、算”?
也就是数论,行程,图形、计算四个问题。数论难在它的抽象,这是区分尖子生和普通生的关键;行程问题复杂就在其应用,孩子在做这类题目的时候,要求的不仅是其思维,还有其表述;图形问题(几何问题)杂而难,重点要求的是面积的计算,这是中学教育的开始;计算是基础,是孩子取得高分的必要保障。
由于这四个问题,学生容易入门,但不易熟练,时常犯错误,因此成为近年来重点中学考试的热点,据统计各民校近年来的这几大问题的考题占据全部了80%左右,而数论和行程问题的考察更是重中之重,往往占到一张试卷的50%.如何复习这四方面的内容呢?
对于图形问题,我们要说的就是培养孩子的形象思维,重点加强的是面积的计算。(面积公式总结往下看)计算的技巧和方法也是在做题的总结和加强的,这里重点介绍一下数论和行程问题的复习方法。
数论学习中学生往往容易犯如下几个错误:
1、读题障碍。数论的题目叙述往往只有几句话,甚至只有一行,可就这短短的几句话,却表达了很多意思,学生如果读不出题中的意思,题目通常会解错。
2、知识僵化。由于数论问题非常抽象,大多数学生往往采用死记硬背的方法来"消化"所学的内容,导致各个知识点都似曾相识,但遇到实际题目却一筹莫展。例如,说起奇偶性都知道怎么回事,马上就开始背:"奇数+奇数=偶数……"可是在做题的时候就想不到用。
3、只见树木,不见森林。对于数论定理的灵活运用很欠缺。提起定理都能一字不差的背下来,但是对各个概念和性质缺乏整体上的认识和把握,更不用说理解各知识点之间的内部联系了。
知识体系:
整除问题:
(1)数的整除的特征和性质 (小升初常考内容)
(2)位值原理的应用(用字母和数字混合表示多位数)
质数合数:
(1)质数、合数的概念和判断(2)分解质因数(重点)
约数倍数:
(1)最大公约最小公倍数(2)约数个数决定法则 (小升初常考内容)
余数问题:
(1)带余除式的理解和运用;(2)同余的性质和运用;(3)中国剩余定理奇偶问题:(1)奇偶与四则运算;(2)奇偶性质在实际解题过程中的应用完全平方数:(1)完全平方数的判断和性质(2)完全平方数的运用整数及分数的分解与分拆(重点、难点)
小升初必考题目主要有下面类型:
一、计算
1.四则混合运算繁分数
⑴运算顺序
⑵分数、小数混合运算技巧一般而言:①加减运算中,能化成有限小数的统一以小数形式;②乘除运算中,统一以分数形式。
⑶带分数与假分数的互化
⑷繁分数的化简
2.简便计算
⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序①运算定律的综合运用②连减的性质③连除的性质④同级运算移项的性质⑤增减括号的性质⑥变式提取公因数形如:
3.估算求某式的整数部分:扩缩法
4.比较大小①通分a。通分母b。通分子②跟“中介”比③利用倒数性质
5.定义新运算
6.特殊数列求和运用相关公式
二、数论
1.奇偶性问题2.位值原则3.数的整除特征4.整除性质5.带余除法6。唯一分解定理7。约数个数与约数和定理8。同余定理9.完全平方数性质10.孙子定理(中国剩余定理)11.辗转相除法12.数论解题的常用方法:枚举、归纳、反证、构造、配对、估计
三、几何图形
四、典型应用题
1.植树问题①开放型与封闭型②间隔与株数的关系
2.方阵问题外层边长数-2=内层边长数(外层边长数-1)×4=外周长数外层边长数2-中空边长数2=实面积数
3.列车过桥问题①车长+桥长=速度×时间②车长甲+车长乙=速度和×相遇时间③车长甲+车长乙=速度差×追及时间列车与人或骑车人或另一列车上的司机的相遇及追及问题车长=速度和×相遇时间车长=速度差×追及时间
4.年龄问题差不变原理5.鸡兔同笼假设法的解题思想
6.牛吃草问题原有草量=(牛吃速度-草长速度)×时间
7.平均数问题8.盈亏问题分析差量关系
9.和差问题
10.和倍问题
11.差倍问题
12.逆推问题还原法,从结果入手
13.代换问题列表消元法等价条件代换
五、行程问题
1.相遇问题路程和=速度和×相遇时间
2.追及问题路程差=速度差×追及时间
3.流水行船顺水速度=船速+水速逆水速度=船速-水速船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2
4.多次相遇线型路程:甲乙共行全程数=相遇次数×2-1环型路程:甲乙共行全程数=相遇次数其中甲共行路程=单在单个全程所行路程×共行全程数
5.环形跑道
6.行程问题中正反比例关系的应用路程一定,速度和时间成反比。速度一定,路程和时间成正比。时间一定,路程和速度成正比。
7.钟面上的追及问题。①时针和分针成直线;②时针和分针成直角。
8.结合分数、工程、和差问题的一些类型。
9.行程问题时常运用“时光倒流”和“假定看成”的思考方法。
六、计数问题
1.加法原理:分类枚举
2.乘法原理:排列组合
3.容斥原理
4.抽屉原理:至多至少问题
5.握手问题在图形计数中应用广泛
七、分数问题
1.量率对应
2.以不变量为“1”
3.利润问题
4.浓度问题倒三角原理例:
5.工程问题①合作问题②水池进出水问题6.按比例分配
八、方程解题
九、找规律
十、算式谜
1.填充型2.替代型3.填运算符号4.横式变竖式5.结合数论知识点
十一、数阵问题
1.相等和值问题
2.数列分组⑴知行列数,求某数⑵知某数,求行列数
3.幻方⑴奇阶幻方问题:杨辉法罗伯法⑵偶阶幻方问题:双偶阶:对称交换法单偶阶:同心方阵法
十二、二进制
1.二进制计数法①二进制位值原则②二进制数与十进制数的互相转化③二进制的运算
2.其它进制(十六进制)
十三、一笔画
1.一笔画定理:⑴一笔画图形中只能有0个或两个奇点;⑵两个奇点进必须从一个奇点进,另一个奇点出;
2.哈密尔顿圈与哈密尔顿链
3.多笔画定理笔画数
十四、逻辑推理
1.等价条件的转换2.列表法3.对阵图竞赛问题,涉及体育比赛常识
十五、火柴棒问题
1.移动火柴棒改变图形个数2.移动火柴棒改变算式,使之成立
十六、智力问题
1.突破思维定势
2.某些特殊情境问题
十七、解题方法(结合杂题的处理)
1.代换法2.消元法3.倒推法4.假设法5.反证法6.极值法7.设数法8.整体法9.画图法10.列表法11.排除法12.染色法13.构造法14.配对法15.列方程⑴方程⑵不定方程⑶不等方程
贯穿整个小学的27条数学法则
一、笔算两位数加法,要记三条
1、相同数位对齐;
2、从个位加起;
3、个位满10向十位进1。
二、笔算两位数减法,要记三条
1、相同数位对齐;
2、从个位减起;
3、个位不够减从十位退1,在个位加10再减。
三、混合运算计算法则
1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;
2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;
3、算式里有括号的要先算括号里面的。
四、四位数的读法
1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;
2、中间有一个0或两个0只读一个“零”; 3、末位不管有几个0都不读。
五、四位数写法
1、从高位起,按照顺序写;
2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。
六 四位数减法也要注意3条
1、相同数位对齐;
2、从个位减起;
3、哪一位数不够减,从前位退1,在本位加10再减。
七、一位数乘多位数乘法法则
1、从个位起,用一位数依次乘多位数中的每一位数;
2、哪一位上乘得的积满几十就向前进几。
八、除数是一位数的除法法则
1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;
2、除数除到哪一位,就把商写在那一位上面;
3、每求出一位商,余下的数必须比除数小。
九、一个因数是两位数的乘法法则
1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;
2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;
3、然后把两次乘得的数加起来。
十、除数是两位数的除法法则
1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,
2、除到被除数的哪一位就在哪一位上面写商;
3、每求出一位商,余下的数必须比除数小。
十一、万级数的读法法则
1、先读万级,再读个级;
2、万级的数要按个级的读法来读,再在后面加上一个“万”字;
3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
十二、多位数的读法法则
1、从高位起,一级一级往下读;
2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;
3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。
十三、小数大小的比较
比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。
十四、小数加减法计算法则
计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。
十五、小数乘法的计算法则
计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。
十六、除数是整数除法的法则
除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
十七、除数是小数的除法运算法则
除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。
十八、解答应用题步骤
1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;
2、确定每一步该怎样算,列出算式,算出得数;
3、进行检验,写出答案。
十九、列方程解应用题的一般步骤
1、弄清题意,找出未知数,并用X表示;
2、找出应用题中数量之间的相等关系,列方程;
3、解方程;
4、检验、写出答案。
二十、同分母分数加减的法则
同分母分数相加减,分母不变,只把分子相加减。
二十一、同分母带分数加减的法则
带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。
二十二、异分母分数加减的法则
异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。
二十三、分数乘以整数的计算法则
分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
二十四、分数乘以分数的计算法则
分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。
二十五、一个数除以分数的计算法则
一个数除以分数,等于这个数乘以除数的倒数。
二十六、把小数化成百分数和把百分数化成小数的方法
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;
把百分数化成小数,把百分号去掉,同时小数点向左移动两位。
二十七、把分数化成百分数和把百分数化成分数的方法
把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数;
把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。