高一年级必修一数学知识点
1.函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(-x);
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2.复合函数的有关问题
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3.函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称,高中数学;
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;
高一数学练习题
1.集合A??0,1,2,3?,B??4,2,3?,则AB?;
2. 函数f(x)?ln(3?x)的定义域是
3.设f(x)???lgx,x?010,x?0x,则f(f(?2))? ▲ ;
4.函数y?lg(x2?1)的值域是;
5.若二次函数f(x)??x2?ax?4在区间?1,+??上单调递减,则a的取值范围为;
6.幂函数f(x
)的图象经过点,则f(x)的解析式是f(x)?
7.设f(x)是定义在R上的奇函数,当x??时,f(x)??x?x,则f(?)?; 8已知0?a?1,b??1,函数f(x)?loga(x?1)?b的图象不经过第
9.若方程log2x??x?2的解为x0,且x0?(k,k?1),k?N,则k?;
10.已知a?log0.20.3, b?log1.20.8, c?1.5
11.已知3?5?m,且
12.下列命题: ab0.5?, 则将a,b,c按从小到大的顺序排列为 11??2,则m的值为 ▲ ; ab
2x2(x?1)①函数y??在其定义域上是增函数; ②函数y?是偶函数; __?1
③函数y?log2(x?1)的图象可由y?log2(x?1)的图象向右平移2个单位得到; ④若2?3?1,则a?b?0; 则上述正确命题的序号是
13. 定义在R上的奇函数f(x)满足:①f(x)在(0,??)内单调递增;②f(1)?0;则不等式 ab(x?1)f(x)?0的解集为1?2x?4xa
14. 设函数f(x)?lg,a?R.如果不等式f(x)?(x?1)lg4在区间[1,3]上有解,则实数a的4
取值范围是_____▲_____.
高一数学教学计划
一.指导思想:
(1)随着素质教育的深入展开,《新课程标准》提出了“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人”的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。
(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。
(3) 根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。
(4) 使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。
(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。
(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。
二.学情分析:
我校高一学生在数学学习上存在不少问题,这些问题主要表现在以下方面: 1、进一步学习条件不具备.高中数学与初中数学相比,知识的深度、
广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高.如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等.客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。
2、被动学习.许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。不知道或不明确学习数学应具有哪些学习方法和学习策略;老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背.也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。
3、对自己学习数学的好差(或成败)不了解,更不会去进行反思总结,甚至根本不关心自己的成败。
4、不能计划学习行动,不会安排学习生活,更不能调节控制学习行为,不能随时监控每一步骤,对学习结果不会正确地自我评价。
5、不重视基础.一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海.到正规作业或考试中不是演算出错就是中途“卡壳”。 此外,还有许多学生数学学习兴趣不浓厚,不具备应用数学的意识和能力,对数学思想方法重视不够或掌握情况不好,缺乏将实际问题转化为数学问题的能力,缺乏准确运用数学语言来分析问题和表达思想的能力,思维缺乏灵活性、批判性和发散性等。所有这些都严重制约着学生数学成绩的提高
三、教学目标与要求
必修1,主要涉及两章内容:
第一章:集合
通过本章学习,使学生感受到用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言表示数学对象,为以后的学习奠定基础。
1.了解集合的含义,体会元素与集合的属于关系,并初步掌握集合的表示方法;
2.理解集合间的包含与相等关系,能识别给定集合的子集,了解全集与空集的含义;
3.理解补集的含义,会求在给定集合中某个集合的补集;
4.理解两个集合的并集和交集的含义,会求两个简单集合的`并集和交集;
5.渗透数形结合、分类讨论等数学思想方法;
6.在引导学生观察、分析、抽象、类比得到集合与集合间的关系等数学知识的过程中,培养学生的思维能力。
第二章:函数的概念与基本初等函数Ⅰ
教学本章时应立足于现实生活从具体问题入手,以问题为背景,按照“问题情境—数学活动—意义建构—数学理论—数学应用—回顾反思”的顺序结构,引导学生通过实验、观察、归纳、抽象、概括,数学地提出、分析和解决问题。通过本章学习,使学生进一步感受函数是探索自然现象、社会现象基本规律的工具和语言,学会用函数的思想、变化的观点分析和解决问题,达到培养学生的创新思维的目的。
1.了解函数概念产生的背景,学习和掌握函数的概念和性质,能借助函数的知识表述、刻画事物的变化规律;
2.理解有理指数幂的意义,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质;理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质;了解幂函数的概念和性质,知道指数函数、对数函数、幂函数时描述客观世界变化规律的重要数学模型;
第三章:函数的应用
函数的应用是学习函数的一个重要方面,学生学习函数的应用,目的就
是利用已有的函数知识分析问题和解决问题.通过函数的应用,对完善函数思想,激发学生应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助。
1.了解函数与方程之间的关系;会用二分法求简单方程的近似解;了解函数模型及其意义;
2.培养学生的理性思维能力、辩证思维能力、分析问题和解决问题的能力、创新意识与探究能力、数学建模能力以及数学交流的能力。
必修4:主要涉及三章内容:
第一章:三角函数
通过本章学习,有助于学生认识三角函数与实际生活的紧密联系,以及三角函数在解决实际问题中的广泛应用,从中感受数学的价值,学会用数学的思维方式观察、分析现实世界、解决日常生活和其他学科学习中的问题,发展数学应用意识。
1.了解任意角的概念和弧度制;
2.掌握任意角三角函数的定义,理解同角三角函数的基本关系及诱导公式;
3.了解三角函数的周期性;
4.掌握三角函数的图像与性质。
第二章:平面向量
在本章中让学生了解平面向量丰富的实际背景,理解平面向量及其运算的意义,能用向量的语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。
1.理解平面向量的概念及其表示;
2.掌握平面向量的加法、减法和向量数乘的运算;
3.理解平面向量的正交分解及其坐标表示,掌握平面向量的坐标运算;
4.理解平面向量数量积的含义,会用平面向量的数量积解决有关角度和垂直的问题。
第三章:三角恒等变换
通过推导两角和与差的余弦、正弦、正切公式,二倍角的正弦、余弦
高一数学必修一教案
教学目标:
1、理解集合的概念和性质。
2、了解元素与集合的表示方法。
3、熟记有关数集。
4、培养学生认识事物的能力。
教学重点:
集合概念、性质
教学难点:
集合概念的理解
教学过程:
1、定义:
集合:一般地,某些指定的对象集在一起就成为一个集合(集)。元素:集合中每个对象叫做这个集合的元素。
由此上述例中集合的元素是什么?
例(1)的元素为1、3、5、7,
例(2)的元素为到两定点距离等于两定点间距离的点,
例(3)的元素为满足不等式3x—2> x+3的实数x,
例(4)的元素为所有直角三角形,
例(5)为高一·六班全体男同学。
一般用大括号表示集合,{?}如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}。则上几例可表示为??
为方便,常用大写的拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(1)确定性;(2)互异性;(3)无序性。
3、元素与集合的'关系:隶属关系
元素与集合的.关系有“属于∈”及“不属于?(?也可表示为)两种。如A={2,4,8,16},则4∈A,8∈A,32?A。
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A记作a?A,相反,a不属于集A记作a?A(或)
注:1、集合通常用大写的拉丁字母表示,如A、B、C、P、Q??
元素通常用小写的拉丁字母表示,如a、b、c、p、q??
2、“∈”的开口方向,不能把a∈A颠倒过来写。
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。
(2)非负整数集内排除0的集。记作N或N+ 。Q、Z、R等其它数集内排除0
的集,也是这样表示,例如,整数集内排除0的集,表示成Z
请回答:已知a+b+c=m,A={x|ax2+bx+c=m},判断1与A的关系。